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In this paper we present the result of the experiments performed to obtain the characteristics
curves for five composite materials with random distribution of reinforcement. From these curves
we determined the elasticity modulus and the resistance to fracture. Using the modal identification
method we determined the first eight eigenmodes for two bars from composite materials (Bar 1 —
phenolic fireproof resin reinforced with fiberglass; Bar 2 — ortophtalic polyesteric resin reinforced
with fiberglass), embedded at one end and free at the other. We determined the eigenpulsations
for the modes considered and we used the first four modes for the calculus of elasticity modulus.
The results obtained by traction testing compared with the one from modal identification method
certify the utilization of modal analysis in the determination of properties of composite structures.
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The composite materials enable to obtain a great
diversity of mechanical properties. This fact makes
difficult the determination of mechanical characteristics
depending on the proportion of composite components.
The existing theories point out the composites like
homogeneous, generally anisotropic where the material
constants are obtained function of the properties of the
constituents. Usually good results are obtained in static
problems, but serious deficiencies appear concerning the
vibrations, especially due to attenuation which was
observed in the case of composite materials.

A frequent used theory is the theory of the blends,
based on the elementary similitude with the blends of
gases, inwhich the constituents coexist, each exercising
the own partial pressure. With the observance of
composite structure, the constituents are presumed
heteronymous in space, each having individual
deformations. The laws of the blends can be easily
formulated, but the principal problem of the application
of the theory of the blends in the case of composite
blends is the analytic specification of interactions of
congtituentsand of the congtituent equationsfor the blend,
being known the geometrical distribution and the
constituent equations for every individual component.
The complexity of this problem can be presented
considering the case of fibers arrangement in an
unidirectional composite

If the fibers are arranged regularly, it is possible the
identification of an elementary cell that is repeated in
section. But, intheroutine, at therealization of composite
materials, the fibers are randomly distributed, some of
them being included entirely inthe matrix, asthe others
keep contact between them. From the analytic point of
view, thereal solution isfound out between the solution
for the case when the fibers are isolated among them
and the solution in the case when they are in contact.

The results obtained harmonize well with the reality
only inthe Young's modulus case along thefibersandin
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Poisson’scoefficient caselongitudinal, therest being able
to be used only to find out the order of size (measure,
proportion) of elastic coefficients.

A series of simple relations for Young modulus and
Poisson coefficient along the fibers which according to
those given by blendstheory are proposed starting from
the results theoretically obtained in paper [1].

For the others elastic coefficientsit is al so suggested
one relation, but which has the disadvantage to depend
on aparameter that characterizesthe interaction fibers-
matrix, the geometry of the fibers, their arrangement,
but this parameter must be determined in an empiric
manner.

For some composite reinforced with fibers, the
existence of a nonlinear relation among tension—
deformation had been shown [2].

For instance, at the composites epoxidic boron-resin
or epoxidic bleak lead-resin, the nonlinear behaviour is
due to the substance of the matrix that affects basically
the dip module, while the rel ations tension-deformation
onthefibersdirection and a so onthetransversedirection
remain almost linear.

Methods of analysis of nonlinear relation of
constituents were suggested as well [3-6].

Also, sometypes of |load were considered in the case
of plateswith nonlinear properties[7-8].

The answer of the reinforced plates with fibers, at
the dynamic chargewasdeterminedin[9], whilein[10]
led aresearch on the nonlinearity physical influence on
the dynamic behaviour of the composite plates.

The dynamic behaviour for composite bars subjected
to the solicitation of shock types were researched [11-
13].

In [14] were obtained theoretical results and
experimental determinations. Using a matrix method
were determined the main elastic characteristics of
composite materialsand their variation depending onthe
volumetric proportion of reinforcement.
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Theinfluences of damage of materia onthevibrations
of compoasite barswith thin layerswere determined [16-

17.

The characteristics curves

Due to the complexity of the problem and to the big
number on the parameters on which the properties of
composite materials, depend they should be
experimentally verified it if necessary to be
experimentally certified.

Very good results are obtained in the case of atesting
to stretch. Besidesthe tension-deformation dependency
it is also obtained the elasticity modulus, resistance to
fracture and the breaking tension.

We achieved the traction testing for five samples as
follows:

-Sample 1 built from phenolic fireproof resin
reinforced with fiberglass,

-Sample 2 built from polyesteric ortophtalic resin
reinforced with fiberglass;

-Sampl e 3 built from propylene — sulphonates;

-Sample 4 built from polyesteric fireproof resin
reinforced with fiberglass,

-Sample5 built from acrylic polymer.

Infigurel. (Sample 1), figure 2 (Sample 2), figure 3
(Sample 3), figure4 (Sample4) and figure 5 (Sample5)
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we present the characteristic curves for the composite
materials of each plate.

In table 1 are presented the elasticity modulus and
the resistance to fracture for the five samples tested.

Inthe case of Sample 3 wereintroduced theelongation
for the maximum value of tension because appeared a
flowing phenomenon, the elongation in the moment of
fracture being 17 %.
Theoretical background regarding the
experimental modal identification

Any mechanical system can be modeled by “n”
concentrated masspoints“m,”, joint by elastic elements
with“k ” stiffnessand elementswith“c " damping. For
this damped system with ,,“n" degrees of freedom,
subjected to an external excitation system {Q(t)} ,the
motion equations are given by thefollowing relation:

MK x(t)e+|CKx(e)r+ K Rxle )y =100 );
bifFo o) Wl=leh
where

- [M], [C], [K]- the mass, damping and stiffness
matrices;

- {;(t)}, {;(t)}, {x(:)}- the acceleration, velocity and

displacement vectors;

- {Q(1)}- generalized forces vector.

The system response to an external excitation is
presented as a sum of “n” modal contributions due to
each separate degree of freedom:

{X(w)}=i{{"’ S ol VAT How)

a (-, +ilw-v,)) a, (- +il@+v,)) (2

k=1

where: X(w) - Fourier Transform of displacement;

Sample 1 2 4 5 Table 1
Elasticity modulus (Mpa) 3660 | 4581 1710 2815 2066
Resistance to fracture (Mpa) 53 116 68 52 58
Elongation to fracture (%) 2,2 6,4 11 2,7 4,8
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{y}and {y*} - the “k” order eigenvector and his
complex conjugate;
uk - the “k” order damping ratio;
v, - the “k” order damped natural frequency;
a_ and g, - norming constants of eigenvector;
o - external excitation frequency.
In practical applications the modal vectors are

replaced by two modal constants U and v defined by:

kot B —,
u=ug +i-Vf and LY gy )
a a;
Using these notations we can determine the system
admittance, o. ](0)) defined as the rapport between the
displacement response and the force excitation:

a'(a))zn: Uy +i-Vf Uy -i-vf
i @) i) @

In the approximations made during the conception of
the mathematical model, it was used the concept of
discrete systemwith“n” liberty degrees, having itsmass
concentrated in “n” material points. For a precise
approximation of the real system by a discrete system

n”must have ahigh value (n—eo). Thisis not possible
because of experimental and processing techniques and
also because of the time needed for data processing. In
applications the frequencies domain is limited to a
reasonable width determined by the major resonances
of the analyzed equipment and the frequency domain of
application target. In these conditions the sum from (4)
isreduced to several components, noted in thefollowing
with “n” too. The contributions of inferior and superior
modes are included in two correction factors known as
“inferior modal admittance”, -1/ M’ (02 (for inferior
modes) and “residual flexibil ity” S" ' (for superior
modes). The system admittance will be written as:

(o) -1 . n U; +z-Vq’F U:; _,.Vylf 5
"y, ; + ; +S,.
] My i\t +i-lw-v,) ~p+i-(ory,)) ©)

Parameters modal experimental identification

Inthefollowing ispresented the experiment for modal
identification of two plates: thefirst plate from phenolic
fireproof resin reinforced with fiberglass (Sample 1)
having the dimensions 600mm . 100 mm . 4.6 mm and
the second plate from ortophtalic polyesteric resin
reinforced with fiberglass (Sample 2) having the
dimensions 600 mm . 100 mm . 4.4 mm.

The plates arerigidly fixed in a press with a mass of
80 Kg. The experimental montageispresentedinfigure
6.

Fig.6. Experimental montage
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Apparatus measuring system

Accelerometer B&K type 4391 (m=30g; Exciter
B&K type 8202; Conditioning amplifier B& K type 2626;
Chargeamplifier type M1300; Digital measuring system
Spider 8.

Experiment

The plates were divided in four points equally
distributedPl,....,P4. The accelerometer was
successively mounted in points P1,...,P4and for each
measuring point the plates were successively excited in
points P1,....,P4.

For each excitation conditions was measured the
excitation force and the plate accel eration response. Fig.
7 (Sample 1) and figure 8 (Sample 2) present the
experimental data corresponding to excitation in point
and measuring in point P4.

Fig. 7. Timerecorded characteristics (Sample 1)

Fig. 8. Timerecorded characteristics (Sample 2)

Modal identification

It was made under Test Point software, a package of
programsfor modal identification and for estimation of
the structural responseto external excitation distributed
into the structure or concentrated in distinct points. The
modal identificationismade by thefollowing next steps:

1. Determination of the frequency response functions.
Intherangeof 0 ... 500 Hz frequencies, the plates have
eight eigenmodes. figure 9 (Sample 1) and figure 10
(Sample 2) present the frequency response function
(FRF) in Cartesian coordinates and figure 11 (Sample
1) and figure 12 (Sample 2) in polar coordinates,
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corresponding to excitation in point P3 and measuring

inpoint P4.

Fig. 10. FRF in Cartesian coordinates (Sample 2)

2. Theapproximate localization of the resonancesand
determination in initial approximation of the modal

2o

parametersy, and v,,k=12,...,n.

3. Thefirst stage identification of modal parameters
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Fig. 11. FRF in polar coordinates (Sample 1)

Fig. 12. FRF in polar coordinates (Sample 2)
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on limited frequency domains. Theidentificationismade

using linear procedures, determining those modal

parameters which inserted in relation (5) generate

theoretical characteristics which approximate with

minimal error the experimentally determined FRF.
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Fig. 13. Final panel with modal parameters and theoretic ahd expéri mental Ucharacteristics (Sample 1)
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4. Thefinal identification of the modal parameters

1
— S;»

y
over entire frequency range. Theidentification is made
using nonlinear procedure of recursive approximation,
determining those modal parameters which inserted in
relation (5) generate theoretical characteristics which
approximate with minimal error the experimentally
determined frequency response functions.

The figure 13 (Sample 1) and figure 14 (Sample 2)
presentsthefinal panel of identification moduleinwhich
are represented in Cartesian coordinates the real and
imaginary partsof theoretic and experimental frequency
response functions. In the second part of the pageitisa
table containing the modal parameters for all
eigenmodes.

It can be observed that there are very little differences
between the experimental and theoretical characteristics.

The modal parameters can be used for analysis of
structural modifications and for assessment of structure
response to given excitations concentrated in some
distinct pointsor distributed into the structure.

ﬂk’Vk’Uk v

ijr Vij o - k = 1,2,...,”

The utilization of modal analysis to determine the
elasticity modulus.

[LO13068113262192

Fig. 14. Final panel with modal parameters and theoretic and experimental characteristics (Sample 2)

where:

W(x,t) isthetransversal movement of medium fiber
of the bar;

E - isthe elasticity modulus of the bar material;

| - the moment of axial inertia of the bar section;

p - the density of the bar material;

f(x,t) - extrinsically force which reacts on the bar.

If the bar is embedded at one end and free at the
other the eigenfunctions have the form [15]:

The eigenfrequencies are[ 15]:

> |EI
v, =ﬂ—’z — (8)
27° \ pA
where:

| isthe bar length ;
B, - are the roots of equation:

chB-cos B+1=0. 9)

We have: B =1.875; § =4.694; 3 =7.855; 3 =10.996;
B =14.137; 3 =17.279; 3 =20.420; 3 =23,562

Therefore, identifying the eigenfrequencies we can
determinethe elasticity moduluswith the relation:

. . . . 2
Thetransversal vibrations equation of barsis: E = anl? PA v_2 _ (10)
AL A-az—W—f(xt) (6) "
P T The characteristic bars on which we make the
measurements are presented in the table 2.
W.(x)=C ch(B,Ix)—cos(,1x) _chf, + Cf)Sﬂr ) sh(,Ix)—sin(B, Ix) e N @
2 shf3, +sin B, 2
Table 2
Bar 1 (m) b (m) h(mm) | p (Kg /m3) A (mz) 1 (m4)
0,6 0,1 4,6 1130 0,46-107° 811-107™
2 0,6 0,1 4.4 1700 0,44-107 710-107"2
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Table 3

Mode Mode 1 Mode 2 Mode 3 Mode 4
Frequency Bar 1 3,674 23,918 67,648 130,679
(Hz) Bar 2 3,237 19,886 57,621 111,087
v, Bar 1 1,044 1,085 1,096 1,081
_,67 Bar 2 0,921 0,903 0,934 0,919
Elasticity modulus Bar 1 3574 3860 3939 3832
(MPa) Bar 2 4572 4395 4702 4552
For the determination of elasticity modulus we use Refer ences

thefirst four modesof vibration. Theresultsare presented
intable 3.

If we make the medium for Bar 1 we obtain E=3801
MPa and for Bar 2, E=4555 MPa.

Conclusions

In the case of composite materials with random
distribution of reinforcement it is difficult to establish
the calculus relations for the elastic and strength
properties. This happened becauseit can’t be established
exactly thevolumetric distribution of reinforcement and
the way in which this takes over the external stresses.

The determination of composite material properties
using the characteristic curves has the advantage that
information concerning the el asticity modulus, strength
to fracture and the fracture elongation can be obtained.
From figures 1 —5 we noticethat the el astic and strength
propertiesare closer to those of the matrix. Thisthingis
explicable by the fact that the number of fibers oriented
on the stress direction is much smaller than the total
number of fibers. Consequently, the matrix takes the
efforts in a greater percentage than in the case of the
one-way composites.

In the case of the propilen-sulphona sample we can
notice that the phenomenon of flowing appears, the
substance having aductile behaviour. In case of samples
armed with glassfibersthe breakage happens suddenly,
it has afragile character. It is explained by the fact that
the breakage of the composite material happensin the
moment when the fibers give up.

The modal identification method has the advantage
that it is non-destructive and can be used in the case of
complex systemsbuilt from composite materials. But it
can't be used to determine the mechanical parameters
characterizing the breakage. For the determination of
elasticity moduluswere used just thefirst four modes of
vibration becauseif wetakein the calculusany following
modes errors appear. The superior modes underval uate
the élasticity modulus. This thing can be explained by
thefact that theinternal frictionsand theinternal dumping
has effect on the modes of the superior vibrations.

The error given by the modal identification method
relative to the method of stretching test for the sample 1
i$3.85% and for sample 2is0.57%.Therefore, the modal
identification method givesvery good resultsin finding
the elasticity modulus.
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